光有源器件的介绍
2022-06-18 浏览次数:304次
光纤激光器
有源器件分析图光纤通信中主要应用半导体激光器作为光源,近年来随着光纤及其相关技术的深入发展,光纤激光器(FI,)的研发正成为光电子技术等领域内一个热点。光纤激光器具有结构紧凑、转换效率高、设计简单、输出光束质量好、散热表面大、阂值低、高可靠性等优点。可以根据谐振腔结构、增益介质、输出波长、激光模式、掺杂元素、工作机制、光纤结构等加以分类。如果以泵浦抽运方式来分,可以分为纤芯端面泵浦(coreendpumping)(单包层结构)、包层端面泵浦(claddingendpumping)(双包层结构)和包层侧面泵浦(claddingsidepumping)(光纤结构)光纤激光器三大类。
单包层结构的光纤激光器是较早研究的一类光纤激光器,可以追溯到60年代。采用的增益材料有掺NdzO:的硅酸盐系玻璃、掺钦石英光纤、掺稀土的石英光纤、氟化物玻璃光纤等,激光输出功率在毫瓦到瓦量级,激光波长在0.48^-2.7pm范围内。双包层结构光纤激光器(DCFIL)是80年代末发展起来的一类光纤激光器,是目前的研发重点和热点。由于泵浦方式的改变,这类光纤激光器的激光输出功率明显提高,已能达到数瓦到近百瓦量级的输出光功率,使用的增益光纤有掺稀土元素(如Er'十、Yb3十、Nd3+等)的石英光纤、掺稀土元素的氟化物(ZBLAN)玻璃光纤、光子晶体光纤(PCF)等。为了提高输出功率,设计出了对称圆形、偏心圆形、D形、矩形、六边形、梅
花形等内包层结构,其中以长方形内包层结构转换效率较高。巳有饵-共掺双包层光纤激光器输出功率达103W、波长为1565nm的报道,以及锁模掺饵光纤激光器脉冲宽度已达3fs的报道,这些都为全光纤高速通信的实现打下了基础。目前该类光纤激光器从成熟的光纤通信领域向工业加工、医学、印刷业、*等激光应用领域扩展。
光纤结构光纤激光器是近年来提出的泵浦新方法,实际上它是包层端面泵浦方式的一种改进,它从包层侧面射入抽运光,从而构成了“任意形状”光纤激光器概念,使千瓦级的高功率光纤激光器得以实现。现在已有输出功率达2000W,激射波长为1.060um的掺德(Yb)石英光纤激光器产品。包层侧面泵浦也有多种方式,如V型槽侧面泵浦、全拼接侧面泵浦、光纤束侧面泵浦等。采用光学相位阵列(OPA)技术可以得到高能的光纤脉冲激光,这种光纤激光器在激光武器系统、光电对抗、激光有源干扰等*、军事领域有着十分重要的应用,美国、德国等已有相应的*高功率光纤激光器研制计划和实施项目。现在已研发的光纤激光器的谐振腔腔形结构主要有法布里一拍罗(F-P)腔、环行腔、v形腔,8字形腔、福克斯一史密斯(Fox-Smith)腔以及一些复合腔等。光纤激光器是一类新型的激光器,光纤激光器的研究与开发将把包括光纤通信在内的光纤及其相关技术推进到一个新高度,与半导体激光相比,至少在结构上,光纤激光器与光纤通信系统和网络藕合匹配程度更好。
光纤激光器是全光纤化的光源,它将逐渐成为光纤通信领域重要的候选光源。此外,无谐振腔的**荧光光纤光源(SFS)、光子晶体光纤激光器(PCFL)等也是近期活跃的研究课题之一。掺饵光纤放大器(EDFA)的研发成功是80-90年代光纤通信领域内一项重大的技术突破,具有十分重要的意义。近年来,随着光纤放大器技术的不断完善和发展以及与WDM技术的融合,光纤通信的长(**长)距离、(**)大容量、(**)高速、密集波分复用(DWDM)等正成为国际上长途高速光纤通信、越洋光纤通信等领域的主要技术发展方向。
光纤放大器
光纤放大器有掺杂光纤放大器(掺稀土元素,如EDFA,PDFA,YDFA等),非线性光纤放大器(喇曼光纤放大器(RFA)、布里渊光纤放大器(BFA)、光纤参量放大器(OPA)等),塑料光纤放大器(POFA),掺饵光波导放大器(EDWA)等之分。主要技术指标有带宽特性、噪声特性、增益特性等。EDFA是较早开发,目前应用较广泛并且已完全商用化的光纤放大器,具有高增益、大功率、宽频带、低噪声、增益特性与偏振无关、对数据速率与格式透明、插损小、多信道放大串扰低等特点。泵浦光波长主要是980nm(三能级系统)和1480nm(二能级系统),泵浦方式有同向、反向、双向等三种基本方式;EDFA的级联可构成多级EDFA系统。普通的石英基EDFA工作波段在1535-1565nm(G波段),一般增益可达30dB以上,增益带宽为20^-40nm,输出功率为+20dBm左右,噪声系数(NF)小于5dB,EDFA可用于线路(中继)、功率、前置,LAN等形式的放大。为了进一步提高EDFA的性能,可以在硅(Si)基掺饵玻璃光纤中加人其它掺杂元素。例如掺铝(Al),衫(Sm),德(Yb)、氮(N)、磷(P)、锑(Bi)等,以改善放大器的增益带宽和平坦化特性。近期用于L带的氟基掺饵光纤放大器(F-EDFA),蹄基掺饵光纤放大器(Te-EDFA),秘基掺饵光纤放大器(Bi-EDFA)等以及在氟化物玻璃光纤、硅酸盐玻璃光纤、磅酸盐玻璃光纤中掺铭(Tm)等,用于S带的掺铁光纤放大器(TDFA)成为光纤放大器的研究热点。掺钦光纤放大器(NDFA)和掺饵光纤放大器(PDFA)可以工作在1310nm波长,对提高和改进现有光纤通信系统的性能具有重要的现实意义。NDFA和PDFA都是以掺钦(Nd)和掺错(Pr)氟玻璃光纤作为放大增益介质,但NDFA由于放大自发辐射(ASE)限制因素,不易做高增益的1310nm放大器,泵浦波长795nm;PDFA放大效率低、工作不稳定,已研制出较大增益为40dB、噪声系数(NF)为5dB,输出功率为+20dBm的PDFA,NDFA和PDFA的结构性能和可靠性等还有待进一步的改善和提高,以利于完全的商用化。喇曼光纤放大器(RFA)应用了光纤中的喇曼效应来实现光信号放大。
RFA较主要的优点是噪声系数小、全波段可放大、对温度不敏感、在线放大等。RFA有分立式和分布式之分,以适应不同的需求。分立式RFA主要采用拉曼增益高的特种光纤(如高掺锗(Ge)光纤等),长度约1一2km,泵浦功率几瓦,泵浦波长1.06um激光产生的三级斯托克斯(Stakes)线可泵浦放大1.3t.m波长的光信号;1.55rlm波长的光纤通信系统可使用1.48t.m泵浦激光。分立式RFA可产生40dB以上的小信号增益,饱和输出功率+25dBm左右,作为高增益、大功率放大,主要用在需要高增益、易于控制的通信系统中。分布式RFA直接用传输光纤作为放大增益介质,具有分布式放大、噪声系数小、利用系统升级等特点,主要作为光纤系统分布式补偿放大,可以用在远程泵浦、宽带、远距离的1.3pm和1.55f4m光纤传输系统和网络中。RFA的噪声系数(NF)比EDFA明显要小,分布式RFA的NF一般在0.5一1dB之间。RFA相对于EDFA在宽带特性、增益特性、光信噪比(QSNR)和配置灵活性方面都具有明显的优势,更适合大容量、高速率和远距离的传输系统和网络。另外,已出现RFA和EDFA相结合,构成混合式光纤放大器(HFA)的趋势,HFA吸收了RFA和EDFA的长处,进一步提升了光纤放大器的性能。
全光波长变换器
光纤通信系统和网络的密集波分复用(DWDM)是当前光纤通信技术发展的方向之一,由于光通信波长资源的有限,全光波长变换器(AOWC)在全光网络中将成为不可缺少的关键性器件之一。A{?WC技术可以解决光纤通信网络中波长竞争、路由选择、降低网络阻塞、提高网络的灵活性和利用率、扩大网络容量、改善网络的运行、管理和控制水平。AOWC具有变换速率快(10Gbitjs以上)、对比特率和光信号形式透明、变换范围大、偏振不敏感、有利于避免光电转换的“电子瓶颈”效应,可以实现不同光网络之间的波长配匹和优化,增强网络的可靠性和生存性等特性。目前已提出了多种AOWC方案,如光波导型、半导体光放大器(SOA)型、激光器(LD)型和其它类型等,其分类见表3所示,每种方案各有不同的优缺点。AWOC有波长变换范围、变换效率、变换速率、消光比、信噪比、偏振敏感性等多项技术指标。从目前的变换速率来看,SOA-XPM-AOWC和SOAXGM-AOWC可达40Gbit/s,这两种AOWC是近期的研究热点;XAM-AOWC的变换速率在20-40Gbit/s之间;光纤型NOLM-AOWC具有Tbit/s量级的变换潜力,正受到人们的关注;而FWM-AOWC的速率在100Gbit/s以上,并且是一能对输人信号进行透明变换的AOWC,具有广阔的发展前景。
fenny1112.b2b168.com/m/
有源器件分析图光纤通信中主要应用半导体激光器作为光源,近年来随着光纤及其相关技术的深入发展,光纤激光器(FI,)的研发正成为光电子技术等领域内一个热点。光纤激光器具有结构紧凑、转换效率高、设计简单、输出光束质量好、散热表面大、阂值低、高可靠性等优点。可以根据谐振腔结构、增益介质、输出波长、激光模式、掺杂元素、工作机制、光纤结构等加以分类。如果以泵浦抽运方式来分,可以分为纤芯端面泵浦(coreendpumping)(单包层结构)、包层端面泵浦(claddingendpumping)(双包层结构)和包层侧面泵浦(claddingsidepumping)(光纤结构)光纤激光器三大类。
单包层结构的光纤激光器是较早研究的一类光纤激光器,可以追溯到60年代。采用的增益材料有掺NdzO:的硅酸盐系玻璃、掺钦石英光纤、掺稀土的石英光纤、氟化物玻璃光纤等,激光输出功率在毫瓦到瓦量级,激光波长在0.48^-2.7pm范围内。双包层结构光纤激光器(DCFIL)是80年代末发展起来的一类光纤激光器,是目前的研发重点和热点。由于泵浦方式的改变,这类光纤激光器的激光输出功率明显提高,已能达到数瓦到近百瓦量级的输出光功率,使用的增益光纤有掺稀土元素(如Er'十、Yb3十、Nd3+等)的石英光纤、掺稀土元素的氟化物(ZBLAN)玻璃光纤、光子晶体光纤(PCF)等。为了提高输出功率,设计出了对称圆形、偏心圆形、D形、矩形、六边形、梅
花形等内包层结构,其中以长方形内包层结构转换效率较高。巳有饵-共掺双包层光纤激光器输出功率达103W、波长为1565nm的报道,以及锁模掺饵光纤激光器脉冲宽度已达3fs的报道,这些都为全光纤高速通信的实现打下了基础。目前该类光纤激光器从成熟的光纤通信领域向工业加工、医学、印刷业、*等激光应用领域扩展。
光纤结构光纤激光器是近年来提出的泵浦新方法,实际上它是包层端面泵浦方式的一种改进,它从包层侧面射入抽运光,从而构成了“任意形状”光纤激光器概念,使千瓦级的高功率光纤激光器得以实现。现在已有输出功率达2000W,激射波长为1.060um的掺德(Yb)石英光纤激光器产品。包层侧面泵浦也有多种方式,如V型槽侧面泵浦、全拼接侧面泵浦、光纤束侧面泵浦等。采用光学相位阵列(OPA)技术可以得到高能的光纤脉冲激光,这种光纤激光器在激光武器系统、光电对抗、激光有源干扰等*、军事领域有着十分重要的应用,美国、德国等已有相应的*高功率光纤激光器研制计划和实施项目。现在已研发的光纤激光器的谐振腔腔形结构主要有法布里一拍罗(F-P)腔、环行腔、v形腔,8字形腔、福克斯一史密斯(Fox-Smith)腔以及一些复合腔等。光纤激光器是一类新型的激光器,光纤激光器的研究与开发将把包括光纤通信在内的光纤及其相关技术推进到一个新高度,与半导体激光相比,至少在结构上,光纤激光器与光纤通信系统和网络藕合匹配程度更好。
光纤激光器是全光纤化的光源,它将逐渐成为光纤通信领域重要的候选光源。此外,无谐振腔的**荧光光纤光源(SFS)、光子晶体光纤激光器(PCFL)等也是近期活跃的研究课题之一。掺饵光纤放大器(EDFA)的研发成功是80-90年代光纤通信领域内一项重大的技术突破,具有十分重要的意义。近年来,随着光纤放大器技术的不断完善和发展以及与WDM技术的融合,光纤通信的长(**长)距离、(**)大容量、(**)高速、密集波分复用(DWDM)等正成为国际上长途高速光纤通信、越洋光纤通信等领域的主要技术发展方向。
光纤放大器
光纤放大器有掺杂光纤放大器(掺稀土元素,如EDFA,PDFA,YDFA等),非线性光纤放大器(喇曼光纤放大器(RFA)、布里渊光纤放大器(BFA)、光纤参量放大器(OPA)等),塑料光纤放大器(POFA),掺饵光波导放大器(EDWA)等之分。主要技术指标有带宽特性、噪声特性、增益特性等。EDFA是较早开发,目前应用较广泛并且已完全商用化的光纤放大器,具有高增益、大功率、宽频带、低噪声、增益特性与偏振无关、对数据速率与格式透明、插损小、多信道放大串扰低等特点。泵浦光波长主要是980nm(三能级系统)和1480nm(二能级系统),泵浦方式有同向、反向、双向等三种基本方式;EDFA的级联可构成多级EDFA系统。普通的石英基EDFA工作波段在1535-1565nm(G波段),一般增益可达30dB以上,增益带宽为20^-40nm,输出功率为+20dBm左右,噪声系数(NF)小于5dB,EDFA可用于线路(中继)、功率、前置,LAN等形式的放大。为了进一步提高EDFA的性能,可以在硅(Si)基掺饵玻璃光纤中加人其它掺杂元素。例如掺铝(Al),衫(Sm),德(Yb)、氮(N)、磷(P)、锑(Bi)等,以改善放大器的增益带宽和平坦化特性。近期用于L带的氟基掺饵光纤放大器(F-EDFA),蹄基掺饵光纤放大器(Te-EDFA),秘基掺饵光纤放大器(Bi-EDFA)等以及在氟化物玻璃光纤、硅酸盐玻璃光纤、磅酸盐玻璃光纤中掺铭(Tm)等,用于S带的掺铁光纤放大器(TDFA)成为光纤放大器的研究热点。掺钦光纤放大器(NDFA)和掺饵光纤放大器(PDFA)可以工作在1310nm波长,对提高和改进现有光纤通信系统的性能具有重要的现实意义。NDFA和PDFA都是以掺钦(Nd)和掺错(Pr)氟玻璃光纤作为放大增益介质,但NDFA由于放大自发辐射(ASE)限制因素,不易做高增益的1310nm放大器,泵浦波长795nm;PDFA放大效率低、工作不稳定,已研制出较大增益为40dB、噪声系数(NF)为5dB,输出功率为+20dBm的PDFA,NDFA和PDFA的结构性能和可靠性等还有待进一步的改善和提高,以利于完全的商用化。喇曼光纤放大器(RFA)应用了光纤中的喇曼效应来实现光信号放大。
RFA较主要的优点是噪声系数小、全波段可放大、对温度不敏感、在线放大等。RFA有分立式和分布式之分,以适应不同的需求。分立式RFA主要采用拉曼增益高的特种光纤(如高掺锗(Ge)光纤等),长度约1一2km,泵浦功率几瓦,泵浦波长1.06um激光产生的三级斯托克斯(Stakes)线可泵浦放大1.3t.m波长的光信号;1.55rlm波长的光纤通信系统可使用1.48t.m泵浦激光。分立式RFA可产生40dB以上的小信号增益,饱和输出功率+25dBm左右,作为高增益、大功率放大,主要用在需要高增益、易于控制的通信系统中。分布式RFA直接用传输光纤作为放大增益介质,具有分布式放大、噪声系数小、利用系统升级等特点,主要作为光纤系统分布式补偿放大,可以用在远程泵浦、宽带、远距离的1.3pm和1.55f4m光纤传输系统和网络中。RFA的噪声系数(NF)比EDFA明显要小,分布式RFA的NF一般在0.5一1dB之间。RFA相对于EDFA在宽带特性、增益特性、光信噪比(QSNR)和配置灵活性方面都具有明显的优势,更适合大容量、高速率和远距离的传输系统和网络。另外,已出现RFA和EDFA相结合,构成混合式光纤放大器(HFA)的趋势,HFA吸收了RFA和EDFA的长处,进一步提升了光纤放大器的性能。
全光波长变换器
光纤通信系统和网络的密集波分复用(DWDM)是当前光纤通信技术发展的方向之一,由于光通信波长资源的有限,全光波长变换器(AOWC)在全光网络中将成为不可缺少的关键性器件之一。A{?WC技术可以解决光纤通信网络中波长竞争、路由选择、降低网络阻塞、提高网络的灵活性和利用率、扩大网络容量、改善网络的运行、管理和控制水平。AOWC具有变换速率快(10Gbitjs以上)、对比特率和光信号形式透明、变换范围大、偏振不敏感、有利于避免光电转换的“电子瓶颈”效应,可以实现不同光网络之间的波长配匹和优化,增强网络的可靠性和生存性等特性。目前已提出了多种AOWC方案,如光波导型、半导体光放大器(SOA)型、激光器(LD)型和其它类型等,其分类见表3所示,每种方案各有不同的优缺点。AWOC有波长变换范围、变换效率、变换速率、消光比、信噪比、偏振敏感性等多项技术指标。从目前的变换速率来看,SOA-XPM-AOWC和SOAXGM-AOWC可达40Gbit/s,这两种AOWC是近期的研究热点;XAM-AOWC的变换速率在20-40Gbit/s之间;光纤型NOLM-AOWC具有Tbit/s量级的变换潜力,正受到人们的关注;而FWM-AOWC的速率在100Gbit/s以上,并且是一能对输人信号进行透明变换的AOWC,具有广阔的发展前景。
fenny1112.b2b168.com/m/